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The emerging field of biotherapeutics provides successful treatments for various

diseases, yet immunogenicity and limited efficacy remain major concerns for many

products. Glycosylation is a key factor determining the pharmacological properties

of biotherapeutics, including their stability, solubility, bioavailability, pharmacokinetics,

and immunogenicity. Hence, an increased attention is directed at optimizing the

glycosylation properties of biotherapeutics. Currently, most biotherapeutics are produced

in non-humanmammalian cells in light of their ability to produce human-like glycosylation.

However, most mammals produce the sialic acid N-glycolylneuraminic acid (Neu5Gc),

while humans cannot due to a specific genetic defect. Humans consume Neu5Gc in

their diet from mammalian derived foods (red meat and dairy) and produce polyclonal

antibodies against diverse Neu5Gc-glycans. Moreover, Neu5Gc can metabolically

incorporate into human cells and become presented on surface or secreted glycans,

glycoproteins, and glycolipids. Several studies in mice suggested that the combination

of Neu5Gc-containing epitopes and anti-Neu5Gc antibodies could contribute to

exacerbation of chronic inflammation-mediated diseases (e.g., cancer, cardiovascular

diseases, and autoimmunity). This could potentially become complicated with exposure

to Neu5Gc-containing biotherapeutics, bio-devices or xenografts. Indeed, Neu5Gc can

be found on various approved and marketed biotherapeutics. Here, we provide a

perspective review on the possible consequences of Neu5Gc glycosylation of therapeutic

protein drugs due to the limited published evidence of Neu5Gc glycosylation onmarketed

biotherapeutics and studies on their putative effects on immunogenicity, drug efficacy,

and safety.

Keywords: antibody, biotherapeutics, glycosylation, sialic acid, N-glycolylneuraminic acid (Neu5Gc), immunology,

anti-carbohydrate antibodies

INTRODUCTION

Biotherapeutics are a rapidly increasing portion of the pharmaceutical market, with over a 100 new
products approved and marketed in the U.S. and the European Union over the past decade (1).
Among the commonly used biotherapeutics are antibodies, cytokines, enzymes, and hormones,
originally purified from living organisms and characterized by their therapeutic potential, with
limited evaluation of their potential immunological effects in recipient patients. Large-scale
manufacturing of these therapeutic products involves expression of recombinant DNA in biological
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FIGURE 1 | Representative N-glycosylation pattern produced in different organisms. N-linked glycosylation process starts with biosynthesis of a common core

structure of Man3GlcNAc2, but additional modifications varies significantly among species. Yeast cells typically produce high-mannose type glycans, while most

insect N-glycans are composed of the core structure, and to a lower extent, additional mannose, fucose, and galactose. Plant cells produce more complex type

glycans, often containing xylose. Mammalian cells mainly synthesize “human-like” complex type N-glycans, however human cells do not express the two common

mammalian glycan antigens αGal and Neu5Gc (Man – mannose; GlcNAc – N-acetylglucosamine; GalNAc – N-acetylgalactosamine; Neu5Gc – N-glycolylneuraminic

acid; Neu5Ac – N-Acetylneuraminic acid).

systems such as bacteria, yeast, insect and mammalian cells,
as well as transgenic animals (1, 2). Being produced in living
systems, therapeutic proteins often undergo post-translational
modifications, most notably glycosylation.

Glycosylation is an important and ubiquitous modification,
in which sugar chains (glycans) are covalently attached
to proteins or lipids. Glycan biosynthesis is a template-
independent process, which rely on a complex network of
serially operating glycan-modifying enzymes (3, 4). The variety
of possible monosaccharide compositions and modifications,
linkage configurations and branching points gives rise to a
tremendous diversity of glycan structures (Varki et al., 2015).
Since this is not a template-driven process, proteins with identical
amino acid sequences would typically differ in the degree of
occupancy of their glycosylation sites (macro-heterogeneity),
and would carry different glycans in a specific glycosylation
site (micro-heterogeneity) (5). The glycosylation pattern of a
cell changes through development and differentiation, under
different environmental conditions, and during pathologies such
as inflammation and malignancy, indicating the involvement
of glycans in numerous processes in physiology and in
disease (6).

Glycosylation of biotherapeutics has a substantial impact
on their pharmacological properties and biological activity (7–
10). Biotherapeutics glycosylation is largely determined by their
production system (Figure 1). While non-mammalian cells (i.e.,

yeast, insect, or plant cells) are attractive due to their high
yields, production of most biopharmaceutical products have
shifted into mammalian expression platforms (i.e., hamster,
human, or mouse cells) largely owing to consideration of
their different glycosylation patterns (1). While yeast cells
contain mostly high-mannose structures, mammalian-derived
systems carry more complex glycans that include galactose,
fucose and sialic acids (Figure 1)—all dramatically affecting
the pharmacodynamics and pharmokinetics of the drugs, most
notable in glycosylated-antibodies (11–13). Higher levels of
sialic acid at the tips of glycan chains generally improves
serum half-life and stability of biotherapeutics (12, 14, 15),
partly since in the presence of terminal sialic acid glycosylated-
biotherapeutics are not recognized by liver asialoglycoprotein
receptors (ASGR1) or mannose receptors (MR; CD206), thereby
preventing their rapid removal from circulation (12, 16). In
addition, the negative charge of sialic acids positively contribute
to their thermal stability and solubility (17, 18). Monoclonal
antibodies constitute a major class of biotherapeutics, and in
many of these antibodies the functionality is directly regulated
by the glycosylation on their Fc domain. All IgG antibodies
are glycosylated at a conserved asparagine residue (Asn297) in
the Fc region (19), and some are also glycosylated at their Fab
region (20–22). The glycan on Asn297 site modulates the shape
of the Fc domain in a way that it alters its ability to interact
with various Fc receptors (10, 15, 20, 23, 24). Remarkably, IgG
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Fc glycosylation is altered in pathological conditions such as
autoimmunity (25), infection (10), and cancer (26–28), thereby
modulating their effector functions (29). Interestingly, removal
of the whole N-glycan revokes the ability of the Fc domain
to interact with Fc receptors, thus Fc glycosylation is essential
for the IgG effector functions (13, 30). The absence of fucose
residues enhances antibody-dependent cellular cytotoxicity (31).
In addition, higher presence of galactose promotes complement-
dependent cytotoxicity, while decreased galactosylation leads
to alternative complement cascade activation (32, 33). IgG
antibodies with higher amount of terminal α2–6-linked sialic
acids are recognized by DC-SIGN on dendritic cells, leading
to anti-inflammatory activity (34, 35), while on the other
hand activation of dendritic cells through antibody aggregates
may induce immunogenicity and development of anti-drug
antibodies (36). Aiming to optimize glycosylation properties,
currently most biotherapeutics are produced in mammalian
expression systems, with their ability to produce human-like
glycosylation (1, 2, 37). Major efforts had been put into
various methods for cell-glycoengineering to control antibody
glycosylation (1, 35, 38–40), or to predict the glycosylation based
on computational modeling (13, 38, 41–44).

Although humans and most other mammals have relatively
similar glycosylation patterns, two major differences have been
identified. Unlike most other mammals, humans lack the
enzymes to synthesize the Galα1–3Galβ1–(3)4GlcNAc (αGal)
epitope and the common sialic acid N-glycolylneuraminic
acid (Neu5Gc) (45) (Figure 1). In addition to the inability to
naturally express these sugar structures, all humans produce
circulating antibodies against both antigens (45–49). In contrast
to αGal, exogenous Neu5Gc can be metabolically incorporated
into newly synthesized glycans and become presented on
human cells (50, 51). Co-existence of Neu5Gc-containing
epitopes and circulating anti-Neu5Gc antibodies have been
suggested to exacerbate chronic inflammation-mediated diseases
(52–57). This immune-conflict may be further complicated
with exposure to Neu5Gc-containing biotherapeutics, bio-
devices or xenografts. Indeed, recent studies have suggested
that Neu5Gc-glycans have an enormous diversity (58–60),
and predicted to be widely found on various approved and
marketed biotherapeutics (2, 61), such as Cetuximab (61)
and anti-thymocyte globulin (62–65). Although biotherapeutics
provide effective treatment for a variety of clinical conditions,
suboptimal efficacy and safety are major concerns for many
of these products. Herein, we discuss the unique situation
of Neu5Gc-containing biotherapeutics in the face of anti-
Neu5Gc responses in humans, and the current knowledge on
the effects of Neu5Gc on immunogenicity, efficacy, and safety
of biotherapeutics.

Neu5Gc IS IMMUNOGENIC IN HUMANS

Sialic acids are 9-carbon α-keto acidic sugars usually present at
the outermost part of glycans in animals (5, 66). The two most
common sialic acids in mammals are N-acetylneuraminic acid
(Neu5Ac) and its hydroxylated form, Neu5Gc. Conversion of

CMP-Neu5Ac to CMP-Neu5Gc is catalyzed by the enzyme CMP-
N-acetylneuraminic acid hydroxylase (CMAH) that is inactive in
humans (66). In contrast to all other mammals, humans cannot
synthesize Neu5Gc due to irreversible mutation in the CMAH
gene that occurred ∼3 million years ago, before the appearance
of the genus Homo (67–70). Nevertheless, consumption of
Neu5Gc-containing mammalian-derived products (e.g., red
meat and dairy) results in uptake of Neu5Gc-glycoproteins
through micropinocytosis (71–73) and metabolic incorporation
of Neu5Gc epitopes into newly synthesized glycans (50, 56, 72–
74). Thus, low levels of Neu5Gc are present in human tissues,
mostly on endothelium and epithelium, and are known to
accumulate in certain pathological conditions, mostly in cancer
(52, 56, 71, 75).

This unique phenomenon results in presentation of foreign
antigen in the context of self (Neu5Gc is replacing the self
Neu5Ac on existing cellular glycans), termed “Xeno-autoantigen”
(47, 57). Hence, Neu5Gc is foreign in humans and mediates
production of a complex anti-Neu5Gc antibodies response,
or “Xeno-autoantibodies” (47, 51, 57, 76). Neu5Gc is a 325
Dalton molecule and cannot by itself fill the paratope of an
antibody, yet Neu5Gc-containing glycan-epitopes are highly
diverse (58–60) and are recognized by polyclonal anti-Neu5Gc
IgM, IgA, and mostly IgG antibodies that make up 0.1–0.2%
of total circulating antibodies in humans (47, 49, 77–79). Anti-
Neu5Gc antibodies in humans arise already in infants, soon
after the introduction of dietary Neu5Gc (e.g., cow milk in
baby formula, meat-containing grinded foods), and have been
suggested to be induced through uptake of dietary Neu5Gc by
non-typeable Haemophilus influenzae (NTHi) during infection
in infants (80), and through micropinocytosis of Neu5Gc-
glycoproteins into human cells followed by recycling into the
cells surface glycoproteins and glycolipids (71–74). In fact, all
healthy humans examined thus far had anti-Neu5Gc antibodies,
although sometimes at low levels andwith limited repertoires (47,
49, 78, 81). This antibody response against Neu5Gc can be higher
in certain pathologies and may remain high for decades (82–84).

Studies in mice had suggested that the co-existence of
Neu5Gc-glycans and serum anti-Neu5Gc antibodies may lead
to immune-driven chronic inflammation, termed “xenosialitis,”
thereby exacerbating chronic inflammation-related diseases such
as cancer, cardiovascular disease and autoimmunity (52, 53, 57,
84–86). For example, high anti-Neu5Gc IgG titers were shown
to be associated with increased risk for colorectal cancer (84),
which also fits the reported association of red meat consumption
and higher carcinoma risk (55, 87–89). Similarly, in a human-like
mouse model (Cmah-KO) high consumption of Neu5Gc resulted
in an inflammatory phenotype, and together with circulating
anti-Neu5Gc antibodies (in Cmah/Ldlr-DKO mouse model)
resulted in increased atherosclerosis (52, 86, 90). These findings
in mice fit the reported high risk of cardiovascular disease that is
associated with consumption of redmeat and processedmeat (91,
92), although clear evidence in humans is still controversial, at
least through in vitro studies on effects of anti-Neu5Gc antibodies
on human endothelial cells that express authentic Neu5Gc
levels (65). Neu5Gc and anti-Neu5Gc antibodies had also been
suggested to participate in autoimmunity (54, 55, 93). Altogether,
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this unique human-specific immune conflict could help explain
the susceptibility to numerous chronic inflammation-related
diseases, which conspicuously occur in humans (94). The
consequences of Neu5Gc/anti-Neu5Gc responses in humans
could potentially be further exacerbated by exposure to Neu5Gc-
containing biotherapeutics, bio-devices, or xenografts.

Neu5Gc ON MARKETED
BIOTHERAPEUTICS ASSOCIATED WITH
THEIR PRODUCTION SYSTEM

Production of many biotherapeutics involves non-human
mammalian cells, serum or serum-derived substances, thus are
likely to contain some levels of Neu5Gc. Generalizations cannot
be made since glycosylation properties, including Neu5Gc levels,
are influenced by many factors during the production process.
Yet, it is reasonable to assume the relative Neu5Gc levels in
biotherapeutics according to their production systems (2). The
most common platform for biotherapeutics is Chinese hamster
ovary (CHO) cells (1, 2, 95). Several studies have suggested
the presence of Neu5Gc on biotherapeutics produced in CHO
cells, though in relatively low levels (2, 95, 96). Baby hamster
kidney cells (BHK-21) are also often used for production of
biotherapeutics and are expected to express low levels of Neu5Gc
(2). By contrast, murine myeloma cell lines (e.g., NS0 and Sp2/0)
are known to produce Neu5Gc at significantly higher levels
(2, 97, 98). Drugs produced in animals (non-human mammals
that are known to synthesize Neu5Gc intrinsically; e.g., cow, pig,
goat, sheep, and rabbit) are also likely to contain Neu5Gc, since
they were shown to express high amounts of Neu5Gc (50, 60).
For example, antithrombin produced in goat milk and anti-
thymocyte globulin derived from rabbit, are known to contain
high levels of Neu5Gc (2, 62, 63). Similarly, Neu5Gc is also
widely found in xenografts that are used for organ and tissue
replacement in humans, as demonstrated with tissues derived
from cows and pigs (99–102). These findings also prompted the
generation of Neu5Gc-deficient animals as novel platforms (103–
107).

Human cell lines represent the ideal production platform in
terms of glycosylation properties, but their high risk of viral
transmission and low protein yield make them less popular
for production of biotherapeutics (37). Nevertheless, several
products derived from human cells (HEK293 and HT-1080)
have been approved in recent years (1). Utilization of these cells
may become more common in the future, yet the presence of
Neu5Gc in their products remains a significant concern, as it can
also be metabolically incorporated from exogenous sources (i.e.,
from the growth media). Hence, even human cells can produce
Neu5Gc-containing biotherapeutics if Neu5Gc is unintentionally
supplemented in their growth media, for example through
the addition of animal serum or serum-derived substances (2,
45). Although it was well-known that humans cannot express
Neu5Gc, its immunogenic potential was under-rated for years,
and accordingly its presence on biotherapeutics was largely
disregarded. With the accumulating information about Neu5Gc
and anti-Neu5Gc antibodies in humans, the presence of Neu5Gc

on biotherapeutics should be re-evaluated. While the effect of
Neu5Gc on biotherapeutics remains poorly characterized, several
recent studies addressed possible consequences (61–65, 108–
111), as described below.

EFFECTS ON SERUM ANTI-Neu5Gc IgG
RESPONSES IN HUMANS

Treatment of human patients with Neu5Gc-containing
biotherapeutics can significantly alter the pre-existing immune
response against Neu5Gc, both quantitatively and qualitatively.
Yet, some studies failed to show human immune response
against Neu5Gc-containing biotherapeutics, as in the case
of recombinant erythropoietin that was produced in CHO
cells (96, 112). Of note, these conclusions were based on
the human response evaluated against Neu5Gc-containing
gangliosides. It is possible that with current technologies
as glycan microarrays it would be possible to revisit these
findings. More recent studies were able to clearly demonstrate
immunological effects in humans. Anti-thymocyte globulin
(ATG) is an immunosuppressive biotherapeutic commonly used
in transplantation and autoimmune diseases (113). ATG is a
polyclonal IgG produced in rabbits and was shown to contain
Neu5Gc (62, 63). One of the side effects during treatment with
this drug is the development of an immune reaction against
the non-human animal-derived immunoglobulins. This is
characterized by immune complex formation that can develop
into a serum sickness disease (62, 114). In fact, without strong
immunosuppression most patients will develop serum sickness
(114). Furthermore, it was shown that ∼10% of first-kidney
graft recipients treated with the immunosuppressive drug ATG
developed serum sickness disease, and in addition had increased
serum anti-Neu5Gc IgG responses (62). The serum sickness
was associated with late graft loss, and these patients exhibited
further elevated titers of anti-drug and anti-Neu5Gc IgG in blood
samples >4 years post-transplantation compared to patients
without serum sickness (62). In another study, ATG treatment
was found to be associated with a shift in anti-Neu5Gc IgG
repertoire in transplantation patients over time (64). Similarly,
analyzing early events in another prospective study of kidney-
graft recipients within their first year showed that patients with
ATG induction treatment had a highly significant increase
in anti-Neu5Gc IgG levels compared to patients not treated
with ATG. In addition, these antibodies shifted their response
repertoire over time to recognize different Neu5Gc-glycans, even
in the face of a strong immunosuppression in those patients, but
no effect on the graft function was observed within the limit of
this study (110).

While mostly used in transplantation, ATG therapy was also
explored as a therapeutic drug in young adults within the
Study of Thymoglobulin to arrest Type 1 Diabetes (START
clinical trial) (114). In these diabetic patients, ATG treatment
also resulted in a highly significant increase in levels of serum
anti-Neu5Gc IgM and IgG that peaked after 1 month and
remained detectable even 1 year after treatment (108). Further
characterization of the top responders by elaborated glycan
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microarrays demonstrated the rapid increase in responses against
multiple Neu5Gc-glycans after 1 month, persistence over 2 years,
and further demonstrated altered repertoires of serum anti-
Neu5Gc IgG (63). In fact, ATG treatment changed the pre-
existing response to induce anti-Neu5Gc IgG of higher affinity
with extended diversity. Interestingly, in some patients there
was de-novo recognition of various Neu5Gc-containing glycan
epitopes, including of Neu5Gc-glycans normally expressed on
glycolipids that were not present on the ATG drug (63). Overall,
these findings suggested that Neu5Gc-containing biotherapeutics
are immunogenic reagents, and once injected into humans
that already express circulating anti-Neu5Gc antibodies, act as
triggers of extended immune responses. In fact, current data
support their role as inducers of secondary anti-Neu5Gc immune
responses. In some individuals possibly also triggering a recall
of memory responses inducing antibody recognition of Neu5Gc-
glycans that had not been presented on the drug.

ANTI-Neu5Gc ANTIBODIES IN DISEASE

It was postulated that such elevated anti-Neu5Gc responses could
potentially increase Neu5Gc-mediated xenosialitis and chronic
inflammation-mediated diseases, as cancer and atherosclerosis
(53). High pre-existing total anti-Neu5Gc IgG levels measured
by glycan microarrays were associated with increased risk of
colorectal cancer (in a cohort of 71 colorectal cancer cases
and matched controls of the EPIC-Norfolk cohort plasma
samples) (84). However, based on a large cohort of ∼200,000
kidney allograft recipients, average anti-Neu5Gc IgG responses
measured by EIA method did not show increased colon
cancer risk in the ∼18% ATG-treated patients compared to
those not treated with ATG (111). Of note, these studies
evaluated different pools of blood anti-Neu5Gc IgG antibodies
and measured by different methods: pre-existing antibodies by
arrays (84) vs. drug-induced antibodies by EIA (111). Currently,
different methods are available tomeasure anti-Neu5Gc antibody

responses (49, 115), and there are clear differences between pre-
existing vs. ATG-induced anti-Neu5Gc IgG (63, 65), that together
could perhaps explain the different analysis outcome regarding
cancer risk.

Likewise, contradicting reports exist regarding anti-Neu5Gc
antibodies in the context of cardiovascular disease risks. Aiming
to examine gene expression profiles by in vitro studies, human
endothelial cells that were engineered to express low levels of
surface Neu5Gc (mimicking the levels expected to be present
from dietary intake in humans) were exposed to different
pools and dose of affinity-purified anti-Neu5Gc antibodies.
This analysis showed differential gene expression when cells
were exposed to ATG-induced compared to pre-existing anti-
Neu5Gc antibodies or in the absence of such antibodies.
Interestingly, drug-induced anti-Neu5Gc antibodies did not
significantly upregulate inflammation-related genes that would
be expected in xenosialitis (65). However, other in vivo studies
in the human-like Neu5Gc-deficient mice also lacking the
LDL receptor showed increased atherosclerosis propensity only
when both high levels of diet-derived Neu5Gc-antigens and
induced anti-Neu5Gc antibodies were present, thus supporting
xenosialitis (90). Altogether, these findings suggest that anti-
Neu5Gc antibody responses in humans are complex and further
studies are needed to better understand their relationship with
various diseases in humans.

RAPID CLEARANCE OF
Neu5Gc-CONTAINING BIOTHERAPEUTICS
IN VIVO—EVIDENCE IN MICE

Besides the immunogenicity of Neu5Gc on biotherapeutics, it
was postulated that these Neu5Gc-drugs could potentially be
recognized by circulating anti-Neu5Gc antibodies in humans,
and by that affect drug levels and/or efficacy in patients.
This was directly investigated using the top selling cancer
biotherapeutic monoclonal antibodies targeting EGFR (61).

FIGURE 2 | Immune complexes of Neu5Gc-containing biotherapeutics. In the human-like Neu5Gc-deficient Cmah-KO mice, it was demonstrated that circulating

polyclonal anti-Neu5Gc antibodies can bind Neu5Gc-containing biotherapeutic monoclonal antibodies and generate immune complexes that mediated rapid

clearance of the biotherapeutic drug (61).
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Consistent with their production system, it was shown that
Cetuximab produced in murine myeloma cells contains Neu5Gc,
while Panitumumab expressed in CHO cells lack Neu5Gc (61).
Human serum anti-Neu5Gc antibodies could bind the Neu5Gc-
containing Cetuximab and generate immune complexes, but
did not bind Panitumumab. Furthermore, consistent with their
expected immunogenic properties, injection of these drugs
to the human-like Neu5Gc-deficient Cmah-KO mice induced
serum anti-Neu5Gc antibody only in the Neu5Gc-containing
Cetuximab-treated group. In these mice, circulating serum anti-
Neu5Gc antibodies resulted in a rapid clearance of the Neu5Gc-
containing Cetuximab, but not of Panitumumab (61). Together,
these data suggest that Neu5Gc on biotherapeutics could
potentially affect drug levels in circulation through immune
complex formation (Figure 2), at least in human-like mice.
Currently, there is no evidence of drug neutralizing activity of
anti-Neu5Gc antibodies. It remains to be investigated whether
Neu5Gc/anti-Neu5Gc could affect drug clearance in patients,
hence alter drug efficacy and as such play a role in the variability
of the clinical responses observed across a population for a
given biotherapeutic.

CONCLUSIONS AND PERSPECTIVE

Biotherapeutics have revolutionized the treatment for numerous
clinical conditions, yet immunogenicity and efficacy issues
remain to be addressed. Currently, most biotherapeutics are
produced in non-human mammalian cells to allow human-
like glycosylation, as it was shown to dramatically affect
pharmacological properties of these products. Yet, despite the
fact that it was recognized that humans cannot produce the non-
human carbohydrate Neu5Gc, its immunogenic potential was
much ignored, and accordingly its expression on biotherapeutics
was largely overlooked. In fact, non-human mammals produce
Neu5Gc-glycans, against which all humans have circulating

polyclonal antibodies. Moreover, Neu5Gc can be metabolized
by human cells and become presented on cell surface glycans,
glycoproteins and glycolipids. In addition, all humans examined
thus far had serum anti-Neu5Gc responses at variable levels
and repertoires. Neu5Gc on biotherapeutics may induce the
pre-existing anti-Neu5Gc responses in humans, and these could
potentially contribute to increased xenosialitis and related
diseases, yet further evidence is needed to fully understand
the developed responses and their effects in humans. Drug-
induced or pre-existing anti-Neu5Gc antibody responses could
potentially contribute to drug clearance from circulation through
immune complex formation, thereby reducing drug efficacy,
although clear evidence in humans is yet to be provided.
While not discussed in this review, similar effects could be
expected by αGal glycosylation on biotherapeutics since all
humans have circulating anti-Gal antibodies. Thus, much of
the mechanistic insights into the outcome of the co-existence
of anti-Neu5Gc antibodies and antigenic Neu5Gc-containing
biotherapeutics (or anti-Gal antibodies and antigenic αGal-
containing biotherapeutics) in humans is largely unknown and
warrants further investigation.
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